

 [image: AO Labs]
 [https://aostreetart.com/aolabs/aesel/]
Blender Sync

Blender Sync allows for collaborative animation using Blender. It has several
pieces of functionality designed to enable true cloud-based workflows within
a Blender installation on your desktop.

Features

Asset Management

Store, browse, and share all of your assets in the cloud. Make sure your team
always has the latest assets with real version-control.

Scene Management

Your Blender Scene is just one of many that will eventually
come together to form your project. Stop worrying about complex file structures
and links, and start managing your projects completely in the cloud.

Object Replication

Object movements within a scene can be replicated in
real-time across many animators working on the same scene. This means your team
can constantly see each-other’s work as it’s happening, providing a platform
for collaboration.

Security

Your project is valuable, so BlenderSync carefully protects your data. All data
is sent using the latest authorization protocols and encryption algorithms, and
data in the cloud is stored in fully secured enterprise databases.

Aesel

BlenderSync utilizes Aesel [https://aesel.readthedocs.io/en/latest/] as
the back-end server which drives all functionality. Therefore, you should
either have Aesel installed [https://aesel.readthedocs.io/en/latest/pages/install.html],
or have access to an existing Aesel Cloud in order to use BlenderSync.

Get Assistance

Stuck and need help? Have general questions about the application? We encourage you to publish your question
on Stack Overflow [https://stackoverflow.com]. We regularly monitor for the tag ‘aesel’ in questions.

We encourage the use of Stack Overflow for a few reasons:

	Once the question is answered, it is searchable and viewable by everyone else.

	The forum format offers an easy method to get a larger community involved with a tougher question.

If you believe that you have found a bug in BlenderSync, or have an enhancement request, we encourage you to raise an issue on our github page [https://github.com/AO-StreetArt/BlenderSync].

Contents:

	Installing Blender Sync
	Install from Source

	Getting Started with Blender Sync

	Blender Sync Testing
	Blender API Wrapper Tests

Installing Blender Sync

Currently, only developer installs are available, until the first official release
of BlenderSync.

Install from Source

First, you’ll need to install Pip4Blender [https://pip4blender.readthedocs.io/en/latest/].

Then, follow these instructions [https://pip4blender.readthedocs.io/en/latest/pages/developing.html#user-installation]
to install the requirements.txt file supplied with BlenderSync.

Then, run the generate_release script to create a file called ‘BlenderSync.zip’,
and import this file into Blender from the User Preferences menu.

Getting Started with Blender Sync

More info coming soon!

Blender Sync Testing

BlenderSync is a Blender implementation of the AeselAnimationClient, which means
that primary testing is done through Travis CI [https://travis-ci.org/AO-StreetArt/AeselAnimationClient]
against that repository:

Blender API Wrapper Tests

A test operator is provided which can be used to run unit and integration tests
within Blender. Open the provided ‘test.blend’ file, enable the BlenderSync
addon, and then use the F3 search menu to run ‘Test BlenderSync’.

Index

Design Documents

[image: AO Labs]
 [https://aostreetart.com/aolabs/aesel/]
Contents:

	Asset Management

	Object Management

	Property Management

	Scene Management

	Scene Creation & Load Flows

	Eventing Flows

Asset Management

Asset Management handles creating, updating, and deleting assets prior to those
assets being loaded by end-users. These assets are typically not associated to
a scene, object, or property.

Asset management functionality can serve a useful purpose in isolation, outside
of the rest of the BlenderSync functionality. It can allow users to distribute
and utilize assets into a shared cloud environment, as well as tracking updates
and versions of these assets.

This add-on builds upon the upcoming Blender Asset Management by supporting
integration with Aesel servers for storing, accessing, and finding assets stored
in the cloud.

Basic Asset Management

There are several distinct asset types that need to be considered:

	obj - Object(s) without animation

	fbx - Object(s) with animation

	blend - Blend file

	image - Image files of various sizes

In addition, users will be able to manipulate both local and remote assets. Local
assets are exported and saved on disk, while remote assets are those that have
been pushed to an Aesel server.

Users should be able to select any number of Objects in the Blender UI, then export
to any asset format. Once an object is exported, it will show up in the local assets
browser.

Local assets can be set to auto-sync with their remote counterparts, or require
manually pushing updates out to the remote server.

The UI is focused on the upcoming Asset Management functionality expected in Blender 2.81,
which displays Active Assets (assets currently present in the scene).
The browser will also be able to display Passive Assets (assets which are not
currently present in the scene), all with thumbnails.

Local Asset Folders

Passive Local Assets should be displayed in folders, providing organization when
many assets are stored on the same system. These folders should correspond with
folders on the physical file system.

Remote Asset Collections

Remote Assets should be able to be organized into Collections, which can then
be viewed from within the Asset browser the same way that folders are viewed for
local assets.

Operators Overview

Local Asset Operators

	Selected to obj - Export the selected objects to .obj format, and add this as a local asset

	Selected to fbx - Export the selected objects to .fbx format, and add this as a local asset

	Selected to blend - Export the selected objects to .blend format, and add this as a local asset

	Asset to Cloud - Send the selected local Asset to the Aesel Server

	Assets to Cloud - Send all updated local Assets to the Aesel Server

Local and Remote Asset Operators

	Generate Thumbnail - Generate a thumbnail for a selected asset from the current view

	Overwrite with Selected - Use the selected Objects to update the selected Asset

	Load Asset - Load the selected Asset into the current scene. If it is a remote asset, load it as a local asset first

	Delete Asset - Delete the local files for an asset and, if present in the cloud, delete it there as well.

Remote Asset Operators

	Filter Remote Assets - Query for Assets stored in the cloud

UI Elements Overview

The Asset Management functionality planned in Blender 2.81 will be central to
the viewing and management of Assets. This will serve as the central Asset Browser
for both local and cloud assets.

The Asset Browser is divided into 3 primary sections: Active Local Assets,
Passive Local Assets, and Passive Remote Assets.

The Local Assets browsers can be organized with folders, while the Passive
Remote Assets browser can be organized with collections. Both should be
represented the same visually within the browser.

[image: ../../_images/AssetBrowser.png]

Native Blend File Integration

The primary storage mechanism for the first iteration of BlenderSync will be
.blend files stored in Aesel.

This provides the required framework for more advanced workflows, by using
Asset Sub ID’s and Relationship Subtypes to allow these blend files to represent
a variety of different asset types. This means taking advantage of all of Blender’s
features without having to necessarily code for each one inside the backend.

In order for .blend files to be imported, however, we need to make certain
underlying assumptions about how we are going to implement our scenes.

Basic Scene Structure

Within each Scene, we will have a number of collections:

	One for all Scene Assets

	One for each Aesel Object at the top of a parent-child chain

Scene Assets will simply be imported into the Scene Asset Collection, but each
Object Asset will need to be imported into it’s respective Collection, and potentially
linked to a parent. Parent-child relationships will be stored in the ‘parent’
field of the object in Aesel. Each object in Aesel will correspond to an object
in a Blend File.

Sub ID’s and Subtypes

Within an Asset Relationship, an Asset Sub ID will refer to the path within a blend
file to import, and a relationship subtype will be used to specify
the type of path for the Asset Sub ID. For example, the subtype might be ‘object’,
in which case the sub ID would be the name of the object within the blend file to import.

Scene Creation & Load Flows

[image: ../../_images/BlenderSyncFlowDiagrams.png]

Eventing Flows

[image: ../../_images/BlenderSyncEventFlowDiagrams.png]

Object Management

Object Management is primarily accomplished through existing Blender functions.
Users will typically interact with objects (ie. moving them around, assigning
keyframes, etc), and BlenderSync will replicate these objects behind the scenes.

Some operators will be added, however, to perform CRUD operations on Objects in
the remote server. These operators will always work on the selected objects
in the Blender UI, so will still primarily be driven by normal usage of Blender.

Object Replication

All Objects within a scene are replicated by sending UDP updates periodically for
any updated objects within that scene. These updates are sent to the address
returned from scene registration, which is performed when a scene is loaded into
the Blender interface.

Operators Overview

	Create Object - Save the selected Blender Object(s) to the Aesel servers

	Update Object - Overwrite the attributes of the selected object in the Aesel servers

	Delete Object - Delete the Aesel Objects corresponding to the selected objects

UI Overview

The only required UI for Object Management is a toolbar showing the object operators.

Property Management

Property Management allows replication of Blender values that are not associated
to an object, such as gravity.

Crud Operations will be supported by the UI, with all properties displayed in a
list. Each Property will be mapped by the ‘asset_sub_id’ attribute of the
Clyman Property API to the Blender RNA identifier.

Operators Overview

	Create Property - Use the RNA value in the text input and current value at that RNA address to generate a new property. Optionally include a property name.

	Update Property - Update the attributes of the selected Property value in Aesel, including the value.

	Get Property - Retrieve the selected Property from Aesel, and update the corresponding Blender value.

	Delete Property - Delete a property from the Aesel server.

	Filter Properties - Filter the Properties in the properties list.

UI Overview

The Properties list should share the design of the Scene List, obviously with
Property attributes populated in place of Scene Attributes.

Scene Management

Scene Management involves finding Scenes on a remote server, performing CRUD operations
on those scenes, and loading scenes into the Blender interface.

Projects

Scenes can be organized into Projects, and the Scene list is able to filter by
Project. The Project Filter in the Scene list should be auto-populated by a
selection in the Project list.

Operators Overview

Project Operators

	Create Project - Create a new Project

	Update Project - Update the details of an existing Project

	Delete Project - Delete an existing Project

	Filter Projects - Filter the list of Projects by the specified filter

Scene Operators

	Load Scene - Load the selected Scene into the Blender interface

	Create Scene - Create a new Scene

	Update Scene - Update the details of an existing Scene

	Delete Scene - Delete an existing Scene

	Filter Scene - Filter the list of Scenes by the specified filter

UI Elements Overview

There are two basic elements which need to be added to the UI: The Project List
and Scene List. Both have the same basic structure, offering CRUD operations on
a list of data, as well as filtering and pagination. The thumbnail of the selected
data element should also be displayed.

[image: ../../_images/SceneList.png]

 _static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/file.png

_static/minus.png

_static/down.png

_static/plus.png

_static/Aesel_Icon_Alpha.png

_static/ajax-loader.gif

_images/BlenderSyncFlowDiagrams.png
Scene Creation

Aesel Object Creation

Scene Create Request [Export Scene as .blend asset

For each object

<S>

True
False
Create Aesel Rig Object: Create Aesel Object
¥ 17
For each bone ‘ ‘ For each child object
v v Recursive
Create Aesel Bone Object Create Aesel Object

T

Write Object Body

For each action in NLA Tracl

¥
Write Action Body

For each Frame in Action

-y

Write Frame Transform

L2

Write Graph Handles

Object Create Request

Scene Registration

Load Properties

Register to Aesel Scene.

L2

Load Scene Asset

L2

Query Scene Objects

L2

Recursive

>{For non-bone Aesel Object]

Build Object Tree

2

Query Scene Properties

L2

Match to Blender Data

L2

Load Scene Properties

2

Match to Blender Object

Yy

For Action in Aesel Object.

For Frame in Action

v

Update Transform

v

Update Graph Handles

A
Load Object Properties

!

For Bone in Aesel Object

True
R S

For Action in Bone

RN S

For Frame in Action

2

Update Transform

A2
Update Graph Handles

L2

Load Object Properties

if Rig

3
3

False

Recurse on Children

Query Properties

For Property in Response

For Action in Property

v

For Frame in Action

2

Update Values

v

Update Graph Handles

v

_images/SceneList.png
Scenes

Scenel

Scene2

Scene3

Scene4

Scene5

Scene6

Scene7

[

Name |[Project

Tags

_static/up-pressed.png

nav.xhtml

 Table of Contents

 		
 Blender Sync

 		
 Installing Blender Sync

 		
 Install from Source

 		
 Getting Started with Blender Sync

 		
 Blender Sync Testing

 		
 Blender API Wrapper Tests

_images/AssetBrowser.png
Active - Remote

File Type Asset Type Tags
Name Name Name
Name Name Name

_images/BlenderSyncEventFlowDiagrams.png
Update Generation Scheduled Update Sender

Method called from Scheduler

Dependency Graph Update [——<ZIf Selected Object changed in current frame.

True For msg in Event Queue.

For Object in Scene

T msg sent for Object already this cycie

False

L2
Send Aesel Event.

if Object changed in current frame

True

A 2
Match to Aesel Object

A2
Add msg to LIFO Event Queue

Update Listener
Full state Synch Timer ——————————>{ For Object in Scene

2 UDP Listener
Match to Aesel Object
¥
Map to Blender Object
A2
Add msg to LIFO Event Queue ¥

Add to Ul Queue

Scheduled Update Processor

Method called from Scheduler

Formsg in Ul Queue

A2
Apply Ul Updates

_static/up.png

_images/Aesel_Logo_Alpha.png

_static/images/Aesel_Icon_Alpha.png

